

Welcome to CS106B!

Who's Here Today?
● Aeronautics and

Astronautics
● Bioengineering
● Biology
● Chemical

Engineering
● Chemistry
● Civil /

Environmental
Engineering

● Computational and
Mathematical
Engineering

● Computer Science
● Creative Writing
● Design

● Earth Planetary
Sciences

● Earth Systems
● Economics
● Education
● Electrical

Engineering
● Engineering
● Ethics in Society
● History
● Human Biology
● Immunology
● Law
● Mechanical

Engineering
● Medicine

● Management
Science and
Entineering

● Physics
● Political Science
● Spanish
● Statistics
● Stem Cell

Engineering /
Regenerative
Medicine

● Symbolic Systems
● Theater and

Performance
Studies

● Undeclared!

Course Staff

Keith Schwarz
htiek@cs.stanford.edu

Jonathan Coronado
jonathan.coronado@stanford.edu

The CS106B Section Leaders

mailto:htiek@cs.stanford.edu
mailto:jonathan.coronado@stanford.edu

Prerequisites

CS106A
(or equivalent)

(check out our course placement page if you’re unsure!)

https://cs106b.stanford.edu/course_placement

https://cs106b.stanford.edu

Course Website

We also have a course Canvas
site, which is mostly there for
lecture videos and to link you

to other resources.

https://cs106b.stanford.edu/

Live Q&A
● Visit our EdStem page. It’s linked through the course

Canvas and also available here:
https://edstem.org/us/courses/70781/discussion

● Next, find the pinned thread at the top entitled
L00: Introduction

● Once you’ve found that thread, give it a to let us ❤
know you’ve found it.

● Feel free to post questions here during lecture – we
can then answer asynchronously.

● You’re always welcome to raise your hand if you have
any questions! 🙋

https://edstem.org/us/courses/70781/discussion

60-Minute Lectures
● We have an 80-minute time slot for lectures this

quarter, but we’ll only use 60 of those minutes
(1:30PM – 2:30PM Pacific).

● Compared with a traditional 50-minute lecture, those
extra ten minutes give us time to
● answer your questions,
● explore and tinker with code,
● go at a more leisurely pace, and
● let you play around with the material.

● I’ll stick around for the remaining 20 minutes of our
time block to chat with folks one-on-one about
whatever it is that you’re interested in. 😃

Our Textbook
● Our course textbook is

Programming Abstractions
in C++ by the legendary
Eric Roberts.
● There’s a draft version

available online.
● We’ve assigned readings for

each lecture. You can either
do them before or after the
lectures – your choice.

● It’s important to complete
the readings in addition to
attending lecture; there’s a
lot of really good info in
there.

https://web.stanford.edu/dept/cs_edu/resources/textbook/Reader-Beta-2012.pdf

Discussion Sections
● Starting next week, we’ll be holding weekly discussion

sections.
● We have our own section signup system that is

independent of the one run by Axess.
● Sign up between Thursday, January 9th at 5:00PM

Pacific and Sunday, January 12th at 5:00PM Pacific by
visiting
https://cs198.stanford.edu/cs198/auth/default.aspx

● Looking forward: some of the later assignments can be
done in pairs. You must be in the same section as
someone to partner with them. You may want to
start thinking about folks you’d like to partner with.

https://cs198.stanford.edu/cs198/auth/default.aspx

Optional Add-Ons
● There are three one-unit courses you can optionally

add on to CS106B.
● These are in addition to rather than in place of a

regular discussion section.
● CS100BACE offers additional practice and support with the

material from CS106B in a small group setting. The
application is available online here.

● CS106L provides a deep dive into the C++ programming
language beyond what we’ll cover in CS106B.

● CS106S explores applications of the CS106B material to
social good.

● Feel free to chat with us about these courses after
class if you want to learn more!

https://docs.google.com/forms/d/e/1FAIpQLSdZWrRh6st1rBXNvwlmtDkcOGuNPGxggNaOTZa5fwmRrz6c4w/viewform

Grading Policies

40% Assignments
20% Midterm Exam
30% Final Exam
5% Section Participation
5% Lecture Participation

Grading Policies

Eight Coding
Assignments

Plus an intro assignment
that goes out today and is

due Friday.

40% Assignments
20% Midterm Exam
30% Final Exam
5% Section Participation
5% Lecture Participation

Grading Policies

Midterm Exam

Monday, February 10th

7PM – 10PM

40% Assignments
20% Midterm Exam
30% Final Exam
5% Section Participation
5% Lecture Participation

Grading Policies

Final Exam

Monday, March 17th

8:30AM – 11:30AM

40% Assignments
20% Midterm Exam
30% Final Exam
5% Section Participation
5% Lecture Participation

Grading Policies

Discussion Sections

Our world-famous
discussion sections!

40% Assignments
20% Midterm Exam
30% Final Exam
5% Section Participation
5% Lecture Participation

Grading Policies

Lecture Participation

Starts next week. We’ll
discuss details later this

week.

What's Next in Computer Science?

Goals for this Course
● Learn how to model and solve

complex problems with computers.
● To that end:

● Explore common abstractions for
representing problems.

● Harness recursion and understand how to
think about problems recursively.

● Quantitatively analyze different approaches
for solving problems.

Goals for this Course

Learn how to model and solve
complex problems with computers.
To that end:
● Explore common abstractions for

representing problems.
Harness recursion and understand how to
think about problems recursively.
Quantitatively analyze different approaches
for solving problems.

http://www.publicdomainpictures.net/pictures/10000/velka/1-1265899974oKJ9.jpg

http://www.publicdomainpictures.net/pictures/10000/velka/1-1265899974oKJ9.jpg

Sentence

Subject Verb Phrase Object

CS106B

Adverb Verb Possessive Noun

totally rocks my socks

Noun

http://en.wikipedia.org/wiki/File:Tree_of_life_SVG.svg

Hey, that's
us!

This structure is called a tree.
Knowing how to model, represent,
and manipulate trees in software

makes it possible to solve interesting
problems.

Building a vocabulary of abstractions
makes it possible to represent and solve a

wider class of problems.

Goals for this Course
● Learn how to model and solve

complex problems with computers.
● To that end:

● Explore common abstractions for
representing problems.

● Harness recursion and understand how to
think about problems recursively.

● Quantitatively analyze different approaches
for solving problems.

Goals for this Course

Learn how to model and solve
complex problems with computers.
To that end:

Explore common abstractions for
representing problems.

● Harness recursion and understand how to
think about problems recursively.
Quantitatively analyze different approaches
for solving problems.

http://www.marketoracle.co.uk/images/2010/Oct/fractal-tree2.jpg

http://www.marketoracle.co.uk/images/2010/Oct/fractal-tree2.jpg

http://www.marketoracle.co.uk/images/2010/Oct/fractal-tree2.jpg

http://www.marketoracle.co.uk/images/2010/Oct/fractal-tree2.jpg

A recursive solution is a solution that is
defined in terms of itself.

Goals for this Course
● Learn how to model and solve

complex problems with computers.
● To that end:

● Explore common abstractions for
representing problems.

● Harness recursion and understand how to
think about problems recursively.

● Quantitatively analyze different approaches
for solving problems.

Goals for this Course

Learn how to model and solve
complex problems with computers.
To that end:

Explore common abstractions for
representing problems.
Harness recursion and understand how to
think about problems recursively.

● Quantitatively analyze different approaches
for solving problems.

There are many ways to solve the same
problem. How do we quantitatively talk

about how they compare?

Goals for this Course
● Learn how to model and solve

complex problems with computers.
● To that end:

● Explore common abstractions for
representing problems.

● Harness recursion and understand how to
think about problems recursively.

● Quantitatively analyze different approaches
for solving problems.

Who's Here Today?
● Aeronautics and

Astronautics
● Bioengineering
● Biology
● Chemical

Engineering
● Chemistry
● Civil /

Environmental
Engineering

● Computational and
Mathematical
Engineering

● Computer Science
● Creative Writing
● Design

● Earth Planetary
Sciences

● Earth Systems
● Economics
● Education
● Electrical

Engineering
● Engineering
● Ethics in Society
● History
● Human Biology
● Immunology
● Law
● Mechanical

Engineering
● Medicine

● Management
Science and
Entineering

● Physics
● Political Science
● Spanish
● Statistics
● Stem Cell

Engineering /
Regenerative
Medicine

● Symbolic Systems
● Theater and

Performance
Studies

● Undeclared!

Transitioning to C++

Transitioning to C++
● I’m assuming that the majority of you are

either coming out of CS106A in Python coming
from AP CS in Java.

● In this course, we’ll use the C++ programming
language.

● Learning a second programming language is
substantially easier than learning a first.
● You already know how to solve problems; you just

need to adjust the syntax you use.
● While the languages are superficially different,

they have much in common.

Our First C++ Program

Prime Numbers
● A positive integer n is called a prime

number if it’s greater than one and its
only positive divisors are 1 and n.

● For example:
● 15 isn’t prime (15 = 3 × 5).
● 17 is prime.
● 19 is prime.
● 21 isn’t prime (21 = 3 × 7).

● What’s the 5,000th prime number?

def isPrime(n):
 """Returns whether the input number is prime; assumes n >= 2."""

 # Try dividing by all numbers from 2 to n - 1, inclusive.
 for divisor in range(2, n):
 if n % divisor == 0:
 return False

 return True

found = 0 # How many prime numbers we've found
number = 1 # Next number to test

Keep trying numbers until we've found 5000 primes.
while found < 5000:
 number += 1

 if isPrime(number):
 found += 1

Last number tried is the 5000th prime.
print(number)

#include <iostream>
using namespace std;

/* Returns whether the input number is prime; assumes n >= 2. */
bool isPrime(int n) {
 /* Try dividing by all numbers from 2 to n - 1, inclusive. */
 for (int divisor = 2; divisor < n; divisor++) {
 if (n % divisor == 0) {
 return false;
 }
 }

 return true;
}

int main() {
 int found = 0; // How many prime numbers we've found
 int number = 1; // Next number to test

 /* Keep trying numbers until we've found 5000 primes. */
 while (found < 5000) {
 number++;

 if (isPrime(number)) {
 found++;
 }
 }

 /* Last number tried is the 5000th prime. */
 cout << number << endl;
 return 0;
}

#include <iostream>
using namespace std;

/* Returns whether the input number is prime; assumes n >= 2. */
bool isPrime(int n) {
 /* Try dividing by all numbers from 2 to n - 1, inclusive. */
 for (int divisor = 2; divisor < n; divisor++) {
 if (n % divisor == 0) {
 return false;
 }
 }

 return true;
}

int main() {
 int found = 0; // How many prime numbers we've found
 int number = 1; // Next number to test

 /* Keep trying numbers until we've found 5000 primes. */
 while (found < 5000) {
 number++;

 if (isPrime(number)) {
 found++;
 }
 }

 /* Last number tried is the 5000th prime. */
 cout << number << endl;
 return 0;
}

In Python, indentation
alone determines nesting.

In C++, indentation is
nice, but curly braces

alone determine nesting.

#include <iostream>
using namespace std;

/* Returns whether the input number is prime; assumes n >= 2. */
bool isPrime(int n) {
 /* Try dividing by all numbers from 2 to n - 1, inclusive. */
 for (int divisor = 2; divisor < n; divisor++) {
 if (n % divisor == 0) {
 return false;
 }
 }

 return true;
}

int main() {
 int found = 0; // How many prime numbers we've found
 int number = 1; // Next number to test

 /* Keep trying numbers until we've found 5000 primes. */
 while (found < 5000) {
 number++;

 if (isPrime(number)) {
 found++;
 }
 }

 /* Last number tried is the 5000th prime. */
 cout << number << endl;
 return 0;
}

Python uses True and False;
C++ uses true and false.

#include <iostream>
using namespace std;

/* Returns whether the input number is prime; assumes n >= 2. */
bool isPrime(int n) {
 /* Try dividing by all numbers from 2 to n - 1, inclusive. */
 for (int divisor = 2; divisor < n; divisor++) {
 if (n % divisor == 0) {
 return false;
 }
 }

 return true;
}

int main() {
 int found = 0; // How many prime numbers we've found
 int number = 1; // Next number to test

 /* Keep trying numbers until we've found 5000 primes. */
 while (found < 5000) {
 number++;

 if (isPrime(number)) {
 found++;
 }
 }

 /* Last number tried is the 5000th prime. */
 cout << number << endl;
 return 0;
}

In Python, newlines mark
the end of statements.

In C++, individual
statements must have a
semicolon (;) after them.

return false;

#include <iostream>
using namespace std;

/* Returns whether the input number is prime; assumes n >= 2. */
bool isPrime(int n) {
 /* Try dividing by all numbers from 2 to n - 1, inclusive. */
 for (int divisor = 2; divisor < n; divisor++) {
 if (n % divisor == 0) {
 return false;
 }
 }

 return true;
}

int main() {
 int found = 0; // How many prime numbers we've found
 int number = 1; // Next number to test

 /* Keep trying numbers until we've found 5000 primes. */
 while (found < 5000) {
 number++;

 if (isPrime(number)) {
 found++;
 }
 }

 /* Last number tried is the 5000th prime. */
 cout << number << endl;
 return 0;
}

In Python, you print output by
using print().

In C++, you use the stream
insertion operator (<<) to push

data to the console. (Pushing
endl prints a newline.)

#include <iostream>
using namespace std;

/* Returns whether the input number is prime; assumes n >= 2. */
bool isPrime(int n) {
 /* Try dividing by all numbers from 2 to n - 1, inclusive. */
 for (int divisor = 2; divisor < n; divisor++) {
 if (n % divisor == 0) {
 return false;
 }
 }

 return true;
}

int main() {
 int found = 0; // How many prime numbers we've found
 int number = 1; // Next number to test

 /* Keep trying numbers until we've found 5000 primes. */
 while (found < 5000) {
 number++;

 if (isPrime(number)) {
 found++;
 }
 }

 /* Last number tried is the 5000th prime. */
 cout << number << endl;
 return 0;
}

In Python, you can optionally put
parentheses around conditions in
if statements and while loops.

In C++, these are mandatory.

#include <iostream>
using namespace std;

/* Returns whether the input number is prime; assumes n >= 2. */
bool isPrime(int n) {
 /* Try dividing by all numbers from 2 to n - 1, inclusive. */
 for (int divisor = 2; divisor < n; divisor++) {
 if (n % divisor == 0) {
 return false;
 }
 }

 return true;
}

int main() {
 int found = 0; // How many prime numbers we've found
 int number = 1; // Next number to test

 /* Keep trying numbers until we've found 5000 primes. */
 while (found < 5000) {
 number++;

 if (isPrime(number)) {
 found++;
 }
 }

 /* Last number tried is the 5000th prime. */
 cout << number << endl;
 return 0;
}

Python and C++ each have for
loops, but the syntax is different.

(Check the textbook for more
details about how this works!)

#include <iostream>
using namespace std;

/* Returns whether the input number is prime; assumes n >= 2. */
bool isPrime(int n) {
 /* Try dividing by all numbers from 2 to n - 1, inclusive. */
 for (int divisor = 2; divisor < n; divisor++) {
 if (n % divisor == 0) {
 return false;
 }
 }

 return true;
}

int main() {
 int found = 0; // How many prime numbers we've found
 int number = 1; // Next number to test

 /* Keep trying numbers until we've found 5000 primes. */
 while (found < 5000) {
 number++;

 if (isPrime(number)) {
 found++;
 }
 }

 /* Last number tried is the 5000th prime. */
 cout << number << endl;
 return 0;
}

C++ has an operator ++ that
means “change this variable’s

value by adding one to it.”
Python doesn’t have this.

#include <iostream>
using namespace std;

/* Returns whether the input number is prime; assumes n >= 2. */
bool isPrime(int n) {
 /* Try dividing by all numbers from 2 to n - 1, inclusive. */
 for (int divisor = 2; divisor < n; divisor++) {
 if (n % divisor == 0) {
 return false;
 }
 }

 return true;
}

int main() {
 int found = 0; // How many prime numbers we've found
 int number = 1; // Next number to test

 /* Keep trying numbers until we've found 5000 primes. */
 while (found < 5000) {
 number++;

 if (isPrime(number)) {
 found++;
 }
 }

 /* Last number tried is the 5000th prime. */
 cout << number << endl;
 return 0;
}

In Python, comments start with # and continue to the
end of the line.

In C++, there are two styles of comments. Comments
starting with /* continue until */. Comments starting

with // continue to the end of the line.

#include <iostream>
using namespace std;

/* Returns whether the input number is prime; assumes n >= 2. */
bool isPrime(int n) {
 /* Try dividing by all numbers from 2 to n - 1, inclusive. */
 for (int divisor = 2; divisor < n; divisor++) {
 if (n % divisor == 0) {
 return false;
 }
 }

 return true;
}

int main() {
 int found = 0; // How many prime numbers we've found
 int number = 1; // Next number to test

 /* Keep trying numbers until we've found 5000 primes. */
 while (found < 5000) {
 number++;

 if (isPrime(number)) {
 found++;
 }
 }

 /* Last number tried is the 5000th prime. */
 cout << number << endl;
 return 0;
}

In Python, comments on
functions are customarily written
after the first line of the function.

In C++, comments on functions
are customarily written before
the first line of the function.

#include <iostream>
using namespace std;

/* Returns whether the input number is prime; assumes n >= 2. */
bool isPrime(int n) {
 /* Try dividing by all numbers from 2 to n - 1, inclusive. */
 for (int divisor = 2; divisor < n; divisor++) {
 if (n % divisor == 0) {
 return false;
 }
 }

 return true;
}

int main() {
 int found = 0; // How many prime numbers we've found
 int number = 1; // Next number to test

 /* Keep trying numbers until we've found 5000 primes. */
 while (found < 5000) {
 number++;

 if (isPrime(number)) {
 found++;
 }
 }

 /* Last number tried is the 5000th prime. */
 cout << number << endl;
 return 0;
}

In Python, each object has a
type, but it isn’t stated

explicitly.

In C++, you must give a type
to each variable. (The int

type represents an integer,
and bool represents a
Boolean true or false.)

#include <iostream>
using namespace std;

/* Returns whether the input number is prime; assumes n >= 2. */
bool isPrime(int n) {
 /* Try dividing by all numbers from 2 to n - 1, inclusive. */
 for (int divisor = 2; divisor < n; divisor++) {
 if (n % divisor == 0) {
 return false;
 }
 }

 return true;
}

int main() {
 int found = 0; // How many prime numbers we've found
 int number = 1; // Next number to test

 /* Keep trying numbers until we've found 5000 primes. */
 while (found < 5000) {
 number++;

 if (isPrime(number)) {
 found++;
 }
 }

 /* Last number tried is the 5000th prime. */
 cout << number << endl;
 return 0;
}

In Python, statements can be either in
a function or at the top level of the

program.

In C++, most statements must be
inside of a function.

Why do we have both C++ and Python?

C++ and Python
● Python is a great language for data processing and writing

quick scripts across all disciplines.
● It’s pretty quick to make changes to Python programs and then

run them to see what’s different.
● Python programs, generally, run more slowly than C++

programs.
● C++ is a great language for writing high-performance

code that takes advantage of underlying hardware.
● Compiling C++ code introduces some delays between changing

the code and running the code.
● C++ programs, generally, run much faster than Python

programs.
● Knowing both languages helps you use the right tool for

the right job.

Your Action Items
● Read Chapter 1 of the textbook.

● Use this as an opportunity to get comfortable with the
basics of C++ programming and to read more
examples of C++ code.

● Start Assignment 0.
● Assignment 0 is due this Friday half an hour before the

start of class (1:00PM Pacific time). The assignment
and its starter files are up on the course website.

● No programming involved, but you’ll need to get your
development environment set up.

● There’s a bunch of documentation up on the course
website. Please feel free to reach out to us if there’s
anything we can do to help out!

Next Time
● Welcome to C++!

● Defining functions.
● Basic arithmetic.
● Writing loops.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

